
Simulating Dataflow Graphs with C++

David Watkins Columbia University
New York, New York USA

May 10, 2017
djw2146@columbia.edu

ABSTRACT
Compiling high level programming languages into hardware is no
small task. It requires dividing the program into constituent parts
that are representable by a hardware circuit and creating a proper
memory management system that can fit on a single hardware cir-
cuit. Designing a memory system that can reduce contention re-
quires analysis of the dataflow circuit generated from the high level
program and can be determined using a graph coloring algorithm
and using a separate memory system for each color of the graph.
This will reduce memory contention and allow the system to work
faster overall.

1. MOTIVATION
In coordination with Professor Stephen Edwards at Columbia

University, the project Hardware synthesis from a recursive
functional language[2] that compiles a subset of Haskell into a
hardware description language requires a backend for compilation.
In this case this means compiling both a simulated version of the
dataflow network and compiling to SystemVerilog so it can be syn-
thesized as a circuit. The difficulty with this problem is creating
a memory layout for the resulting circuit so that contention be-
tween similarly typed memory elements is reduced or removed
completely while still conforming to the constraints of the sys-
tem. In order to determine this one needs to create the synthesized
dataflow model through either a simulation of the dataflow in C++
or a simulation of the resultant HDL code using a program such as
ModelSim.

2. LOGISTICS
The three most critical parts of the work I was able to do for this

project were:

• Visualizing the dataflow graphs

• Developing an algorithm for avoiding contention in memory
accesses for a dataflow network

• Developing an architecture for the generated simulator code
from a given dataflow network

What would follow from this work would be to continue eval-
uating the effectiveness of the memory contention avoidance al-
gorithm and finishing the compilation step to also compile to Sys-
temVerilog. There was not enough time in the semester to complete
these two tasks.

3. METHODS
In the next few subsections I will discuss the technologies and

used in the process of the research project.

3.1 Background
We have described a high-level synthesis dataflow model that

is the result of a transformation of a recursive function program
with algebraic data types. We attempt to synthesize algorithms with
irregular memory access patterns and complex control behavior. By

using a limited dialect of Haskell we can take advantage of lazy
evaluation and data immutability patterns in hardware to extract
unique optimization that would otherwise not exist in an imperative
source language.

Our dataflow model relies on a series of nodes and channels,
where the nodes perform computational work as a function of the
inputs and outputs from the channels which contains both data and
signals to continue or stop doing work. The ready/valid signal is a
large component of whether a node can send work to the next node
or process work from a source node.

Figure 1: A single-place buffer built from a pair of
our input and output buffers. Shows the valid and
stop (or ready) signals from a pair in and out nodes.
[1]

The source language, in this case Floh, would be used to translate
into the dataflow language which needs to be simulated. Each of
the nodes in the dataflow model can either be stateful or stateless,
mostly depending on whether they need access to memory or if
they need to remember which of the downstream nodes they have
previously served.

3.2 Defining Nodes
The nodes have all been previously defined by Richard Townsend

through the simulator he produced for the simulation of the dataflow
programs. The nodes are listed as follows:

• merge

• mergeChoice

• source

• sink

• fork

• mux

• demux

• choice

• callLock

• func

• iconst

• dconst

• dcon

• read

• write

• add/sub/mul/div/gt/gte/lt/lte/eq/not/and/or

Each of these nodes take 1 or more inputs and have 1 or more
outputs, with the exception of both sink and source in which the
former has 0 outputs and the latter has 0 inputs.

3.2.1 merge

Figure 2: A merge node with 2 inputs and 1 corre-
sponding output

A merge nodes takes n inputs and has 1 output. It picks the
"leftmost" valid input and passes the data component of the channel
through unless the downstream node is not ready. The precedence
of the input nodes is determined by the

3.3 mergeChoice

Figure 3: A merge choice node with two inputs and
two outputs

A merge choice node functions the same as a merge node, while
also outputting an additional value corresponding to the choice of
the merge node as a function of the index of the input.

3.4 source

Figure 4: A source node with one output

A source node will always output a value based on some well
defined input function. It has no inputs per se, but depending on
the clock will output a value. It is effectively a theoretical model
of a source of input tokens into a dataflow network, but its exact
behavior depends on the implementation of the network.

3.5 sink

Figure 5: A sink node with one input

A sink node will take any input tokens and output them to some
well defined behavior. Similar to a source node it is a theoretical
model of an output that is undefined by the dataflow network but is
defined elsewhere.

3.6 fork

Figure 6: A fork node with 1 input and multiple
outputs

A fork node will take in one value and reproduce the same value
across multiple output channels. This is the main method of repro-
ducing values on a network.

3.7 mux

Figure 7: A multiplexer node

A multiplexer node will take 1 input and a choice and output that
input on one of n channels depending on the choice. The choice
must of type integer in order to be properly expressed.

3.8 demux

Figure 8: A demultiplexer node

A demux will do the reverse of a mux. It takes in multiple in-
puts, a choice, and output one of the input nodes depending on the
choice. The choice must be an integer.

3.9 choice

Figure 9: A choice node with a bit of information for
the choice and two outputs depending on the choice.

The choice node will determine which output channel to choose
and output the choice it made depending on the input value. This is
a critical node for allowing conditional statements in the network.

3.10 func
A func node is an arbitrary node for any potential function that

might be implemented on the network. This is defined using a spe-
cial syntax and is implemented in the source language (in the case
of this paper that is Haskell).

3.11 iconst

Figure 10: A constant constructor - similar to a
source.

An iconst node will produce a constant value as long as the input
of the node is valid. The output is always being supplied otherwise.
This is only for primitive constant values.

3.12 dconst
A dconst, similar to an iconst, will produce a constant stream of

constant values but of a custom type. These are typically defined as
a sort of constructor for these objects with no input. The only input
into these will dictate whether a value is produced, but not define
the values inside of the constant.

3.13 dcons
A dcons, contrary to a dconst, does take input to define the fields

of the custom type. Because of this there are often much more

values that can be taken in to accomodate the custom type. This re-
quires all values be ready for the custom type is created. A custom
type is immutable upon initialization.

3.14 read

Figure 11: A read node takes in a pointer and out-
puts data

A read node is a special memory access node that will block
until the memory is read. This is generally implemented in the
form of a pipeline read to memory so as to have the fastest access
time to memory. It is not possible to have as input anything other
than a pointer, which means that some form of memory initializa-
tion needs to occur before a read node, whether that is in the form
of a preinitialized memory block before the sink or a write node
upstream in the network is dependent on the dataflow model. The
data is thread safe because memory that has been read is immutable
upon initialization. As long as the pointer is in flight or stored in
memory the data will not be destroyed or modified.

3.15 write

Figure 12: A write node will take as input data and
output a pointer to memory where that data was
stored.

A write node will take in data and write it to a memory stor-
age device of some kind and output the pointer location of where
that memory was written to. The data, once written, is immutable.
Therefore it is safe to have those pointers in flight.

3.16 add/sub/mul/div/gt/gte/lt/lte/eq/not/and/or
Several basic primitive functions based on comparing or operat-

ing on integers or other primitive numeric types have been added
to the dataflow model. These include functions such as addition,
subtraction, etc. that will take some number of integers and, as
long as the behavior is defined for several input values, will give
the result. Subtraction, division, greater than, greater than equal,
less than, less than equal, and equal are all defined for two input
values. Addition, multiplication, and, and or are all defined for an
arbitrary number of input values. Not is defined for only one input
value.

4. GRAPH VISUALIZATION

In order to best represent the dataflow graphs we were produc-
ing from our compiler step we opted to use a graph visualization
language GraphViz. This allowed us to define a network of nodes
either by hand or as the output of our compiler step and automati-
cally get an image of what the network looks like without drawing
it by hand. An example graph visualization is here:

Figure 13: A complex network generated from a
series of instructions encoded in the flo language

What is important to note from this network is that it was all auto
generated from the IR of the program. This allows for more in-
formation when debugging a program within the flo programming
language that otherwise wouldn’t be as readily available to the pro-
grammer. A dataflow model for a programming language, similar
to assembly, can be opaque to the programmer and therefore any
graphical representation can assist in the development process.

5. GRAPH COLORING
The graph coloring algorithm is meant to separate different read

and write nodes from one another to prevent memory conflicts. By
coloring each identifier with a different color and having the differ-
ent loads and stores parameterized by those colors, a more robust
memory system arises where the memory accesses are successfully
partitioned. Memory contention is one of the worst causes for la-
tency within a dataflow network or a processing unit - and therefore
any methodology to reduce the impact of these contentions is effec-
tive in speeding up an algorithm encoded in a network.

5.1 Overview

Some metrics for evaluating the effectiveness of a memory sys-
tem include:

• Simulate a program and capture a memory trace

• Cycle accurate simulation of the dataflow graph and capture
detailed contention analysis

• Abstract models of memory units and determine how much
locality each portion has with one another

The issue with simulation of the program is that very frequently
it does not capture the entire memory trace of a dataflow graph as
the representation of a Haskell program is too high level. Cycle
accurate simulation is a great way of getting results however it can
be time consuming and only needs to be run once. Abstracting
away a lot of the minutia of a given flo program is likely the most
efficient way to determine if there will memory contention, but it
can be difficult developing algorithms to abstractly compute the
behavior of a network. This is when the graph coloring algorithm
comes in.

5.2 Graph Coloring
The graph coloring algorithm is an algorithm for partitioning

nodes in a graph such that nodes are given colors in a manner where
no single node is touching another node of the same color. This al-
gorithm is used for applications such as making a schedule, mobile
radio frequency assignment, Sudoku solutions, and many more.
The algorithm that will be used later on for coloring a complex
flo graph will be the greedy implementation of the graph coloring
algorithm. It follows the following format:

1. Color first vertex with first color

2. For each remaining V-1 vertices

(a) Collect all colored vertices from current neighbors of
vertex

(b) If any color is not in the list of neighbor vertices - label
it that color

(c) Otherwise color the vertex a new color

5.3 Graph Coloring of a flo Dataflow Graph
The simplification of a flo graph was the trickiest step of design-

ing this algorithm. Unfortunately there are many components in a
flo graph that can cause delays or where this abstraction does not
100% apply to a given network - however this preliminary attempt
at an algorithm will provide the necessary steps to providing a fairly
robust sense of a valid algorithm.

First remove all nodes in a flo dataflow graph except for the
memory access nodes, namely the reads and writes. Because mem-
ory in the flo language is immutable - meaning that once the data is
written it will not be modified - this means that we only ever have to
worry about concurrent reads/writes to different parts of memory.
This means that a given memory unit - which might have 2 read-
/write channels - will need to be specialized for a given memory
type. The initial algorithm - once all extraneous nodes are removed
- takes the write nodes and assigns to them a color given the type
that they are writing.

We then take any downstream read nodes and assign them the
same color as the write nodes that are upstream from them. For
a given write followed by read combination - there should never
be a write without a read of a corresponding type on the other end
of a network. Once the preliminary coloring has been established
- a memory unit is assigned to each write/read network according
to the coloring of the nodes in the network. By assigning these
separate memory units we ensure no contention between these units
however it is possible that there are too many memory units for a
more complex network. So to combat this we look for loops that
only occur after some condition is met and combine the memory
units in these loops with memory units that only exist outside of
this loop.

5.4 Graph Coloring Example

Figure 14: An initial network where all the extra-
neous nodes have been removed

Figure 15: An initial coloring of the memory nodes
based on the type

Figure 16: After realizing the data cannot be writ-
ten until the list is fully consumed - the partitioning
combines the two types into one memory unit

6. SIMULATION
In order to best implement a dataflow network a simulator would

be necessary to test if the language describing the dataflow network
made sense and if the dataflow networks behavior is well defined.
Therefore a simulator creates a good debugging tool for the com-
piler designer to affirm that his implementation is correct. In the
case of the flo language we have designed the architecture for a
dataflow network featuring buffers, nodes, and memory operations.
These are the basic primitive operations that define a dataflow net-
work and with a well designed management framework will accu-
rately simulate a dataflow network.

6.1 Nodes
For our preliminary results we designed nodes to be based off

of C++ templated classes that contained specific methods that sup-
ported simulation. The basic primitives are Packet, Channel, Buffer,
and Node. These are then used by the main simulation loop to gen-
erate a result for a given dataflow network. The program is dynam-
ically generated from the flo compiler.

6.1.1 Packet
A packet contains the messages that are passed between nodes

over channels. It contains fields for both ready and stop as well as
the data packet that is sent. This allows buffers to store the results
from prior cycles and make sure the data holds between cycles.
This design was chosen because it easily encapsulates a custom
data type in the form of a template and also makes sure that nodes
can send ready and stop signals in the form of a set message type.

template <typename T>
class Packet {

public:
bool ready;
bool stop;
T data;

Packet() {
this->data = 0;
this->ready = false;
this->stop = true;

}

Packet(bool ready, T data) {
this->data = data;
this->ready = ready;
this->stop = !ready;

}

};

6.1.2 Channel
A channel was used primarily to allow messages to pass between

nodes and buffers. This way values could be propagated through-
out the network on a given cycle depending on whether the node
was ready or not. The design of channels was chosen over direct
message passing to allow for greater control over the debugging of
the messages as well as making sure that a node was not called on
more than once a cycle. The tick function is to note when a given
cycle has passed and flush all of the channels.

template <typename T>
class Channel
{

public:
Channel();
~Channel();

Packet<T> current;
bool isReady();
bool isValid();

void setReady(bool isReady);
void setValid(bool isValid);

void tick() {
isReady = false;
isValid = false;
packet = EmptyPacket<T>();

}
};

6.1.3 Buffer
Buffers are essentially memory units that allow for delays in in-

put packets across multiple cycles. A zero buffer equates to a chan-
nel in that it directly passes the message to the next node. A buffer
of size 1 will wait 1 cycle to pass the message it has to the next
node. An infinite buffer will take as many packets as it is given
and store them until the next node consumes all them - this is use-
ful for testing whether or not a given network is running efficiently
or not. Buffers were chosen as the ideal solution because it most
closely represents what the hardware will look like when compiling
the dataflow graph.

template<typename T>
class Buffer {

private:
vector<Buffer<T>> buff;
public:
Buffer() {

buff = vector<Buffer<T>>(1);
}

Buffer(int size) {
buff = vector<Buffer<T>>(size);

}

Packet getCurrent() {
return buff[buff.size() - 1];

}

void clock() {
for(int i = buff.size() - 1; i > 0; --i) {

buff[i] = buff[i - 1];
}
buff[0] = Packet<int>();

}

void addToBuff(Packet in) {
buff[0] = in;

}
};

6.1.4 Node
We needed a flexible system for defining nodes - especially since

they could perform a multitude of different functions. A Node
could be any of the aforementioned nodes in section 3 where each
of their behaviors are defined. This Node template is meant to serve
as an interface to describe all future nodes that are implemented.

template <typename T>
class Node
{

public:
Node();
~Node();

Packet<T> run();
};

6.2 Memory Operations
Memory is complex in the flo language because there is implicit

garbage collection when the memory is no longer accessible. In
this system each read and write node has a special implementation
to share memory across the nodes by passing in a shared memory
unit that can capture contention of resources. One of the most im-
portant aspects of this simulator is that it can verify whether or not
contention will occur given a specific graph coloring. The given
memory modules will be aware of the cycles as they occur and will

trigger callbacks which will add the results of the memory to the
channels when the delay for the memory unit as been met.

template <typename T>
class ReadNode : public Node
{

private:
Memory ref;
public:
ReadNode(Memory m) {

ref = m;
}

Packet<T> readyPacket() {
if(ref.isBusy())

return notReadyPacket;
else

return readyPacket;
}

Packet<T> execute(Packet<int> readRequest) {
Packet result = ref.request(readRequest.data);

if(!result.ready) {
return notReadyPacket();

}

}
};

template <typename T>
class WriteNode : public Node
{

private:
Memory ref;
public:
WriteNode(Memory m) {

ref = m;
}

Packet<T> readyPacket() {
if(ref.isBusy())

return notReadyPacket;
else

return readyPacket;
}

Packet<T> run(Packet<int> writeRequest) {
Packet result =
ref.writeRequest(writeRequest.data);

if(!result.ready) {
return notReadyPacket();

}

}
};

template <typename T>
class Memory
{

private:
vector<int> pipeline;
int pipelinesize;
vector<T> data;
bool accessed;
public:
Memory() {

data = vector<T>();
pipelinesize = 2;
pipeline = vector<int>(pipelinesize);

for(int i = 0; i < pipelinesize; ++i) {
pipeline[i] = -1;

}

accessed = true;
}

~Memory();

T read() {
if(pipeline[pipelinesize - 1] == -1)
return 0;
else
return data[]

}

Packet<bool> request(int address) {
if(accessed) notReadyPacket();
else
pipeline[0] = address;

return readyPacket;
}

bool isBusy() {
return accessed;

}

void clock() {
accessed = false;
for(int i = pipeline.size() - 1; i > 0; --i) {

pipeline[i] = pipeline[i - 1];
}

}
};

6.3 Management Framework
The management framework takes all of the nodes in the current

network and looks for any without any dependencies. This will
likely begin with and constructors or source nodes in the network.
The simulator will then propagate run functions down this queue
and add additional nodes to the run queue as they have an inputted
ready signal and execute them in order of observation in the net-
work. A given node should not be run more than once within a
given cycle. This effectively topologically sorts all the nodes in the
network. This also allows each node to make requests to memory
and to effectively determine whether or not there is memory con-
tention within the network. A node can be determined to be ready
when the input channel sends a message over to a buffer and then to
a channel into a node. In the case of a zero buffer these messages
will be sent instantly - but in the case of a memory buffer these
messages will take as many cycles as the buffer has room for to get
to the next node.

The network has the concept of quiescence, whereby if all nodes
have not been able to execute work and the buffers have been un-
able to progress for N cycles, the entire simulation halts and the
work is considered done. The result will be stored in memory and
be displayed at the end of simulation.

6.4 Compiling from AST to Simulator
Compiling the AST to simulator has not been finished at the time

of this writing. Instead a lot of discussion about how to perform
this translation surrounded the idea of where to place buffers to al-
low the programs to run more efficiently. Placement of the buffers
around memory units and any locations where they may be a cycli-
cal dependency on results was the seemingly best heuristic - but
it also seemed that placement of these buffers around two parallel
pipelines would encourage a faster runtime. More experimentation
would be required to find the optimal placement.

7. RESULTS AND ANALYSIS
7.1 Experiments

Not a lot of experimentation was performed in order to determine
whether the simulation worked.

7.2 Next Steps
The next steps would be to implement the graph coloring algo-

rithm and the simulator as described in order to get an accurate read
as to whether the proposed schematic works. The biggest challenge
of this system is that the flo language is very dynamic and therefore
many heuristics that would work with a traditional von neumann ar-
chitecture do not directly translate into a functional hardware archi-
tecture. Literature does not exist for methodologies for performing
these translations and therefore more thought needs to go into this
process.

8. CONCLUSION
In conclusion, a system for coloring memory reads and writes

appears to be the best system for preventing contention as a first
attempt at a heuristic. Designing a simulator to generate a dataflow
network to tease out whether the methodology works in practice is
the most important next step.

9. REFERENCES
[1] Bingyi Cao, Kenneth A. Ross, Martha A. Kim, and Stephen A.

Edwards. Implementing latency-insensitive dataflow blocks. In
Proceedings of the International Conference on Formal
Methods and Models for Codesign (MEMOCODE), 2015.

[2] Kuangya Zhai, Richard Townsend, Lianne Lairmore,
Martha A. Kim, and Stephen A. Edwards. Hardware synthesis
from a recursive functional language. In Proceedings of the
10th International Conference on Hardware/Software
Codesign and System Synthesis, CODES ’15, pages 83–93,
Piscataway, NJ, USA, 2015. IEEE Press.

10. CODE LISTING
10.1 Graph Visualization Translation Code
{-
Module : Fhw.Pass.Dataflow.NodeTypes
Description : The abstract syntax of our dataflow language.

These type definitions form the abstract syntax for our dataflow
graphs. These graphs bridge the gap between a restricted Core program
and SystemVerilog.

A dataflow network is specified with a list of algebraic type definitions
and a list of nodes. The former encompasses the non-integer types that
data tokens may take, while the latter describes the topology and
functionality of the network.

Nodes are primitive functional units. Each node exposes
its connectivity to other nodes as well as the types of tokens it outputs.

At this level of abstraction, tokens passing between nodes
may be of two types: integers and algebraic types.

-}
module Fhw.Pass.Dataflow.NodeTypes (
-- * Abstract Dataflow Syntax
Dataflow(..),
Node(..),
Type(..),
Op(..),
Tydef(..),
Codef(..),
Func(..),

-- * Pretty Printing
pdataflow,

-- * Dot Output
toDotDataflow,

-- * Correctness checker
verify

) where

import Text.PrettyPrint
import Data.Char (toLower)
import Control.Monad
import Control.Applicative ((<$>))
import Data.List
import Data.Maybe
import Fhw.Core.Core

---- | Import dot library
--import Data.Graph.Inductive
--import Data.GraphViz
--import Data.GraphViz.Attributes.Complete
--import Data.GraphViz.Types.Generalised as G
--import Data.GraphViz.Types.Monadic
--import Data.Text.Lazy as L
--import Data.Word
--import WriteRunDot

-- | Types and topology of a dataflow network
data Dataflow = Dataflow [Tydef] [Node]

-- | A general node in our dataflow networks
data Node = Node [Id] --input port identifiers String

Op --Node type
[Id] --output port destinations

deriving (Eq,Ord)

type Id = String

-- | Different nodes and the types of their data tokens

data Op = Merge Int Type
| Fork Int Type
| MergeChoice Int Type
| Mux Type [Dcon]
| Demux Type [Dcon]
| IConst Int Int
| DConst String
| Func Func
| Source Type
| Sink Type
| CallLock [Type]
| ChoiceHold [Dcon]
| Choice [(Dcon,[Int])]

deriving (Eq,Ord)

-- | Primitive functions
data Func = Add | Sub | Mul | Div

| Lt | Gt | Eq
| And | Or | Not
| Read Type Type --Memory operations specify input and output types
| Write Type Type
| Dcons String --name of constructor (arg types are inferred)

deriving (Eq,Ord,Show)

-- Type definition representation mirrors the representation
-- used in FHW.Core (without type variables)
data Tydef = Tydef Tcon [Codef] deriving (Eq,Ord)
data Codef = Codef Dcon [Type] deriving (Eq,Ord)

-- | Data token types
data Type = Int' Int --Sized integer

| Tycon String --Name of user-defined type
deriving (Eq,Ord)

instance Show Dataflow where
showsPrec _ d = shows (pdataflow d)

instance Show Tydef where
showsPrec _ t = shows (ptdef t)

instance Show Codef where
showsPrec _ c = shows (pcdef c)

instance Show Type where
showsPrec _ t = shows (pTy t)

instance Show Node where
showsPrec _ node = shows (pnode node)

instance Show Op where
showsPrec _ op = shows (pOp op)

-- | Print dot representation of Dataflow instance
toDotDataflow :: Dataflow -> String
toDotDataflow (Dataflow _ nodes) = do
nodesWithNames <- [getNodeNamesFrom nodes 0]
"digraph Dataflow {\n" ++ (getEdgesFrom nodesWithNames nodesWithNames) ++ (getVerticesFrom nodesWithNames) ++ "\noverlap=false;\nratio=\"fill\";\nsize=\"8.3,11.7!\";\nmargin=0;\n}"

getNodeNamesFrom :: [Node] -> Int -> [(Node, String)]
getNodeNamesFrom [] _ = []
getNodeNamesFrom (node:nodes) count = [(node, (dotnodename node count))] ++ (getNodeNamesFrom nodes (count+1))

getEdgesFrom :: [(Node, String)] -> [(Node, String)] -> String
getEdgesFrom [] _ = ""
getEdgesFrom (((Node _ _ outputs), curNodename):xs) allNodes =
(foldl (\s ((Node inputs _ _), nodename) -> s ++ (if (length $ intersect inputs outputs) > 0 then curNodename ++ "->" ++ nodename ++ "\n" else "")) "" allNodes) ++
(getEdgesFrom xs allNodes)

getVerticesFrom :: [(Node, String)] -> String
getVerticesFrom [] = ""

getVerticesFrom (((Node _ op _), nodename):nodes) = (dotOp nodename op) ++ (getVerticesFrom nodes)

dotnodename :: Node -> Int -> String
dotnodename (Node _ (Merge _ _) _) count = "Merge" ++ (show count)
dotnodename (Node _ (Fork _ _) _) count = "Fork" ++ (show count)
dotnodename (Node _ (MergeChoice _ _) _) count = "MergeChoice" ++ (show count)
dotnodename (Node _ (Source _) _) count = "Source" ++ (show count)
dotnodename (Node _ (Sink _) _) count = "Sink" ++ (show count)
dotnodename (Node _ (Mux _ _) _) count = "Mux" ++ (show count)
dotnodename (Node _ (Demux _ _) _) count = "Demux" ++ (show count)
dotnodename (Node _ (IConst _ _) _) count = "IConst" ++ (show count)
dotnodename (Node _ (DConst name) _) count = "DConst" ++ name ++ (show count)
dotnodename (Node _ (Func (Add)) _) count = "Add" ++ (show count)
dotnodename (Node _ (Func (Sub)) _) count = "Sub" ++ (show count)
dotnodename (Node _ (Func (Mul)) _) count = "Mul" ++ (show count)
dotnodename (Node _ (Func (Div)) _) count = "Div" ++ (show count)
dotnodename (Node _ (Func (Lt)) _) count = "Lt" ++ (show count)
dotnodename (Node _ (Func (Gt)) _) count = "Gt" ++ (show count)
dotnodename (Node _ (Func (Eq)) _) count = "Eq" ++ (show count)
dotnodename (Node _ (Func (And)) _) count = "And" ++ (show count)
dotnodename (Node _ (Func (Or)) _) count = "Or" ++ (show count)
dotnodename (Node _ (Func (Not)) _) count = "Not" ++ (show count)
dotnodename (Node _ (Func (Read _ ty)) _) count = "Read" ++ (show count) ++ (dottts ty)
dotnodename (Node _ (Func (Write _ ty)) _) count = "Write" ++ (show count) ++ (dottts ty)
dotnodename (Node _ (Func (Dcons ty)) _) count = "Cons" ++ (show count) ++ ty
dotnodename (Node _ (CallLock _) _) count = "CallLock" ++ (show count)
dotnodename (Node _ (ChoiceHold _) _) count = "ChoiceHold" ++ (show count)
dotnodename (Node _ (Choice _) _) count = "Choice" ++ (show count)

dottts :: Type -> String
dottts (Tycon name) = name
dottts (Int' size) = "Int_" ++ (show size)

dotOp :: String -> Op -> String
dotOp nodename (Merge _ _) = nodename ++ "[label=\"Merge\",shape=invtrapezium];\n"
dotOp nodename (Fork _ _) = nodename ++ "[label=\"Fork\",shape=triangle];\n"
dotOp nodename (MergeChoice _ _) = nodename ++ "[label=\"MergeChoice\",shape=trapezium];\n"
dotOp nodename (Source _) = nodename ++ "[label=\"Source\",shape=plaintext];\n"
dotOp nodename (Sink _) = nodename ++ "[label=\"Sink\",shape=plaintext];\n"
dotOp nodename (Mux _ _) = nodename ++ "[label=\"Mux\",shape=trapezium];\n"
dotOp nodename (Demux _ _) = nodename ++ "[label=\"Demux\",shape=invtrapezium];\n"
dotOp nodename (IConst _ _) = nodename ++ "[label=\"IConst\",shape=rectangle];\n"
dotOp nodename (DConst name) = nodename ++ "[label=\"" ++ name ++ "\",shape=rectangle];\n"
dotOp nodename (Func (Dcons ty)) = nodename ++ "[label=\"cons" ++ ty ++ "\",shape=rectangle];\n"
dotOp nodename (Func (Read _ ty)) = nodename ++ "[label=\"read" ++ (dottts ty) ++ "\",shape=rectangle];\n"
dotOp nodename (Func (Write _ ty)) = nodename ++ "[label=\"write" ++ (dottts ty) ++ "\",shape=rectangle];\n"
dotOp nodename (Func _) = nodename ++ "[label=\"Func\",shape=rectangle];\n"
dotOp nodename (CallLock _) = nodename ++ "[label=\"CallLock\",shape=rectangle];\n"
dotOp nodename (ChoiceHold _) = nodename ++ "[label=\"ChoiceHold\",shape=diamond];\n"
dotOp nodename (Choice _) = nodename ++ "[label=\"Choice\",shape=diamond];\n"

-- | Pretty print a Dataflow instance
pdataflow :: Dataflow -> Doc
pdataflow (Dataflow tdefs nodes) = text "Dataflow" $$

braces (vcat (map ptdef tdefs)) $$
braces (vcat (map pnode nodes))

ptdef :: Tydef -> Doc
ptdef (Tydef tcon cdefs) =
text "data" <+> text tcon <+> char '='
$$ indent (vcat $ punctuate (space <> char '|') $ map pcdef cdefs)

pcdef :: Codef -> Doc
pcdef (Codef dcon tys) =
text dcon <+> sep (map pTy tys)

pTy :: Type -> Doc
pTy (Tycon name) = text name
pTy (Int' size) = text "Int" <> char '_' <> int size

pnode :: Node -> Doc
pnode (Node inputs op outputs) =
pPorts inputs <> char '.' <> pOp op <+>

char '-' <> char '>' <+> pPorts outputs

pPorts :: [Id] -> Doc
pPorts = tupify

pOp :: Op -> Doc
pOp (Merge _ ty) = text "Merge" <+> tySig ty
pOp (Fork _ ty) = text "Fork" <+> tySig ty
pOp (MergeChoice _ ty) = text "Mergechoice" <+> tySig ty
pOp (Source ty) = text "Source" <+> tySig ty
pOp (Sink ty) = text "Sink" <+> tySig ty
pOp (Mux ty dcons) = text "Mux" <> tupify dcons <+> tySig ty
pOp (Demux ty dcons) = text "Demux" <> tupify dcons <+> tySig ty
pOp (IConst num size) = text "Iconst" <> parens (int num)

<+> tySig (Int' size)
pOp (DConst name) = text "Dconst" <> parens (text name)
pOp (Func (Dcons name)) = text "Func" <> parens (text name)
pOp (Func (Read tIn tOut)) = text "Func" <> memOpTy "read" tIn tOut
pOp (Func (Write tIn tOut)) = text "Func" <> memOpTy "write" tIn tOut
pOp (Func f) = text "Func" <> parens (text $ map toLower $ show f)
pOp (CallLock inputTys) = text "CallLock" <>

parens (commaList $ map tySig inputTys)
pOp (ChoiceHold dcons) = text "ChoiceHold" <> tupify dcons
pOp (Choice dconFields) = text "Choice" <>

parens (commaList $ map pFields dconFields)
where
pFields (dcon,nums) = text dcon <> brackets (cat $

punctuate comma $
map int nums)

-- Generate a type signature for a Read or Write node
memOpTy :: String -> Type -> Type -> Doc
memOpTy version tIn tOut = parens (text version <+> tySig tIn

<+> char '-' <> char '>' <+> pTy tOut)
tySig :: Type -> Doc
tySig ty = colon <> colon <+> pTy ty

commaList :: [Doc] -> Doc
commaList = cat . punctuate comma

tupify :: [String] -> Doc
tupify = parens . commaList . map text

indent :: Doc -> Doc
indent = nest 2

-- | Sanity check a dataflow network. If all checks pass return the netework,
-- otherwise return the first failed check.
verify :: Dataflow -> Either String Dataflow
verify dflow@(Dataflow types nodes) = do
uniquePorts nodes --Every port name is used exactly twice
mapM_ (typeExistence types) nodes --All data token types have been defined
mapM_ (opCheck types) nodes --Verify individual node properties
--typeTopology types nodes --TODO: Typecheck ports
return dflow

-- | Each port name should appear exactly twice in a Dataflow network:
-- once as an output port, and once as an input port for a different
-- node (we don't currently allow direct feedback loops).
uniquePorts :: [Node] -> Either String ()
uniquePorts nodes
| isJust doubleIn = Left $ showJust "Port appears twice as input: " doubleIn
| isJust doubleOut = Left $ showJust "Port appears twice as output: " doubleOut
| isJust feedbacks = Left $ showJust "Feedback node: " feedbacks
| isJust mismatch = Left $ showJust "Not specified as input and output " mismatch
| otherwise = Right ()
where doubleIn = finder (/=1) ins

doubleOut = finder (/=1) outs
mismatch = finder (==1) (ins ++ outs)
finder f = find (f . length) . group . sort
feedbacks = find (\(Node is _ os) -> not $ null $ intersect is os) nodes
ins = concatMap (\(Node is _ _) -> is) nodes

outs = concatMap (\(Node _ _ os) -> os) nodes
showJust str val = str ++ show (fromJust val)

-- | Ensure that every type and data constructor has a definition,
-- and that sets of data constructors all come from the same definition
typeExistence :: [Tydef] -> Node -> Either String ()
typeExistence types (Node _ op _) = case op of
Merge _ ty -> isDefined ty
Fork _ ty -> isDefined ty
MergeChoice _ ty -> isDefined ty
Source ty -> isDefined ty
Sink ty -> isDefined ty
ChoiceHold constrs -> foldM_ sameTy Nothing constrs
Mux ty constrs -> isDefined ty >> foldM_ sameTy Nothing constrs
Demux ty constrs -> isDefined ty >> foldM_ sameTy Nothing constrs
CallLock tys -> mapM_ isDefined tys
Choice patterns -> foldM_ sameTy Nothing (map fst patterns)
DConst dcon -> void $ findDef dcon types
Func (Dcons dcon) -> void $ findDef dcon types
Func (Read t1 t2) -> mapM_ isDefined [t1,t2]
Func (Write t1 t2) -> mapM_ isDefined [t1,t2]
_ -> return () -- IConst and other Func variants
where
tyConstrs = map (\(Tydef tcon _) -> tcon) types

--Check if type constructor is defined
isDefined (Int' _) = return ()
isDefined (Tycon tcon)
| tcon `elem` tyConstrs = return ()
| otherwise = Left $ "Type '" ++ tcon ++ "' undefined"

--Check if a set of data constructors belong to same type definition
sameTy Nothing dcon = Just <$> findDef dcon types
sameTy (Just tcon) dcon = do
tcon' <- findDef dcon types
if tcon == tcon'
then return $ Just tcon
else Left $ "Constructor " ++ dcon ++

" undefined in type " ++ tcon

-- Find the type containing a defintion for dcon
findDef dcon [] = Left $ "Constructor " ++ dcon ++ " undefined"
findDef dcon (Tydef tcon cdefs : rest) =
if dcon `elem` map dcDefs cdefs
then return tcon
else findDef dcon rest
where dcDefs (Codef dc _) = dc

-- | Check each node's individual properties for consistency
opCheck :: [Tydef] -> Node -> Either String ()
opCheck types node@(Node ins op outs) = case op of
-- One output, inP or outP field counts number of inputs
Merge inP _ -> check "Merge" node (portSizes outs ins inP)
Fork outP _ -> check "Fork" node (portSizes ins outs outP)

-- One output, number of inputs is one more than number of choices
Mux _ constrs -> check "Mux" node (length ins == length constrs + 1

&& singlePort outs)
-- Two inputs, number of outputs equals number of choices
Demux _ constrs -> check "Demux" node (length outs == length constrs

&& length ins == 2)

-- Two outputs, inP field counts number of inputs
MergeChoice inP _ -> check "MergeChoice" node (length outs == 2

&& length ins == inP)

-- Two inputs, one output
ChoiceHold _ -> check "ChoiceHold" node (length ins == 2 &&

singlePort outs)

-- One input, one output, enough bits to express constant
IConst num bits -> check "IConst" node $ bitWidth num bits &&

singlePort ins &&

singlePort outs
-- One input, one output
DConst _ -> check "DConst" node $ singlePort ins && singlePort outs

-- No inputs, one output
Source _ -> check "Source" node $ null ins && singlePort outs
-- No outputs, one input
Sink _ -> check "Sink" node $ null outs && singlePort ins

-- One more input than number of types (each type is an input to the locked
-- function, but we also have a polymorphic input as an unlock signal),
-- number of outputs equals number of types
CallLock tys -> check "CallLock" node (length ins == length tys + 1 &&

length outs == length tys)

-- one output, input number matches function
Func func -> check "Func" node (singlePort outs) >>

funcCheck func node

-- One input, the number of outputs is one more than
-- total fields specified, no pattern index is out of bounds
Choice patterns -> check "Case" node $ and $ singlePort ins :

(length outs == 1 + totalOutFields patterns) :
map (patternBounds $ getCDefs $ map fst patterns) patterns

where
check name n bl = if bl

then Right ()
else Left $ errMsg (name ++ ": " ++ show n)

errMsg n = "A " ++ n ++ " node's definition is inconsistent"

portSizes single many size = singlePort single && length many == size
singlePort ports = length ports == 1
bitWidth val bits = val <= 2 ^ bits - 1

totalOutFields patterns = sum $ map (length . snd) patterns
patternBounds cdefs (dcon,fields) =
let (Codef _ tys) = fromJust $ find ((==dcon) . getDcon) cdefs

highField = maximum fields
lowField = minimum fields

in null fields || --No fields used
lowField >= 0 && --Lowest index is non-negative
length tys >= (highField + 1) --Highest index is within bound

getCDefs [] = error "Case node with no patterns"
getCDefs (dcon:_) = fromJust $ find (elem dcon . map getDcon) $

map getVariants types

getVariants (Tydef _ cdefs) = cdefs
getDcon (Codef dcon _) = dcon

funcCheck Add n = twoInCheck "Add" n
funcCheck Sub n = twoInCheck "Sub" n
funcCheck Mul n = twoInCheck "Mul" n
funcCheck Div n = twoInCheck "Div" n
funcCheck Lt n = twoInCheck "Lt" n
funcCheck Gt n = twoInCheck "Gt" n
funcCheck Eq n = twoInCheck "Eq" n
funcCheck And n = twoInCheck "And" n
funcCheck Or n = twoInCheck "Or" n
funcCheck (Read _ _) n = oneInCheck "Read" n
funcCheck (Write _ _) n = oneInCheck "Write" n
funcCheck Not n = oneInCheck "Not" n
funcCheck (Dcons dcon) n =
let (Just (Codef _ tys)) = find ((== dcon) . getDcon) $ getCDefs [dcon]
in check "Constructor" n $ not (null ins) && --no constant constructors

length tys == length ins

twoInCheck str n = check str n $ length ins == 2
oneInCheck str n = check str n $ singlePort ins

--typeTopology = undefined

10.2 Simulator Defined Code

#include <iostream>
#include <vector>

using namespace std;

template <typename T>
class Packet {
public:

bool ready;
bool stop;
T data;

Packet() {
this->data = 0;
this->ready = false;
this->stop = true;

}

Packet(bool ready, T data) {
this->data = data;
this->ready = ready;
this->stop = !ready;

}

Packet(const Packet &obj) {
this->data = obj.data;
this->ready = obj.ready;
this->stop = obj.stop;

}
};

class Channel
{
private:

bool isReady;
bool isValid;

public:
Channel();
~Channel();

Packet<T> current;
bool isReady();
bool isValid();

void setReady(bool isReady);
void setValid(bool isValid);

void tick() {
isReady = false;
isValid = false;

}
};

class Buffer {
private:

vector<Buffer> buff;
public:

Buffer() {
buff = vector<Buffer>(1);

}

Buffer(int size) {
buff = vector<Buffer>(size);

}

Packet getCurrent() {
return buff[buff.size() - 1];

}

void clock() {
for(int i = buff.size() - 1; i > 0; --i) {

buff[i] = buff[i - 1];
}

buff[0] = Packet<int>();
}

void addToBuff(Packet in) {
buff[0] = in;

}

//Need to capture no change
};

class Add1
{
private:

public:
Add1() {}
~Add1(){}

Packet<T> isReady() {
return readyPacket;

}

Packet execute(Packet<int> in) {
return Packet<int>(in.ready, in.data + 1);

}
};

template <typename T>
class Memory
{
private:

vector<int> pipeline;
int pipelinesize;
vector<T> data;
bool accessed;

public:
Memory() {

data = vector<T>();
pipelinesize = 2;
pipeline = vector<int>(pipelinesize);

for(int i = 0; i < pipelinesize; ++i) {
pipeline[i] = -1;

}

accessed = true;
}

~Memory();

T read() {
if(pipeline[pipelinesize - 1] == -1)

return 0;
else

return data[]
}

Packet<bool> request(int address) {
if(accessed) 1; //Contention return notReadyPacket?
else

pipeline[0] = address;

return readyPacket;
}

bool isBusy() {
return accessed;

}

void clock() {
accessed = false;
for(int i = pipeline.size() - 1; i > 0; --i) {

pipeline[i] = pipeline[i - 1];

}
}

};

template <typename T>
class ReadNode
{
private:

Memory ref;
public:

ReadNode(Memory m) {
ref = m;

}

Packet<T> readyPacket() {
if(ref.isBusy())

return notReadyPacket;
else

return readyPacket;
}

Packet<T> execute(Packet<int> readRequest) {
Packet result = ref.request(readRequest.data);

if(!result.ready) {
return notReadyPacket();

}

}
};

template <typename T>
class Merge
{
private:

public:

Packet<T> isReady() {
return readyPacket;

}

Packet<T> execute(vector<Packet<T>> inputs) {
for(Packet<T> & p : inputs) {

if(p.ready) {
return p;

}
}
return Packet<T>();

}
};

class Merge
{
private:

vector<Channel<T>> upstreams;
Channel<T> output;

public:
Merge();
~Merge();

bool canInput() {

}

bool canOutput() {

}

bool canExecute() {
bool isInputReady = false;

for (std::vector<T>::iterator i = upstreams.begin(); i != upstreams.end(); ++i)
{

isInputReady |= i.get().hasToken();
}

bool isOutputReady = out.canReceiveToken();

return isInputReady && isOutputReady;
}

void execute() {

}
};

class Demux
{

private:
vector<Channel<T>> downstreams;
Channel<T> upstream;
Channel<int> select;

public:
Demux();
~Demux();

bool canExecute() {
bool canSelect = select.hasToken();
Channel<T> & downstreamChannel = downstreams[select.getData()];

}
};

class Fork
{
private:

vector<Channel<T>> neighbors;
Channel<T> upstream;

public:
Fork();
~Fork();

bool readyToExecute() {

return upstream.hasToken();
}

void execute() {
Packet<T> in = upstream.current();

if(!in.ready) {
neighbors[i].put(notReadyPacket);

} else {
for (int i = 0; i < neighbors.size; ++i)
{

neighbors[i].put(upstream.current());
/* code */

}
}

}
};

int main(int argc, char** argv) {
Add1 n;
Buffer b;

b.addToBuff(Packet<int>(true, 1));

while(not quiescefd) {
if(n.isReady()) {

in = b.getCurrent();
out = n.execute(in);

b.addToBuff(out);
} else {

//Pass
}

for(buf b : buffers) {
b.clock();

}

for(Memory m : memories) {
m.clock();

}
}

//Fork node with 3 CHANNELS
//

Packet<int> out = n.execute(b.getCurrent());

//Initialize network

//Propogate readys down (checking if the node is ready to receive as well)

//Calculate values until all nodes are not ready

//Clock all buffers and memorys

//Repeat calculation until there is no change

cout << "Done" << endl;
}

template <typename T>
class Node
{
public:

Node();
~Node();

};

template <typename T>
class Fork : public Node
{
private:

std::vector<Channel<T>> downstreams;
Channel<T> upstream;
std::vector<bool> haveWritten;

public:
Fork() {

}
~Fork();

};

/* EXAMPLE CODE */

// In the case of Fork
// pass not ready up if not ready but send data to the people downstream that are ready
// Remember who you sent it to to send it down

10.3 Python Simulator Attempt Main

1 class Node:
2 """docstring for Node"""
3 def __init__(self):
4 pass
5

6 def enqueue(data, ready, port):
7 pass
8

9 def process():
10 pass
11

12 def update_output():
13 pass
14

15 def get_output():
16 pass
17

18 def isReady():
19 pass
20

21 class Memory:
22 def __init__(self):
23 self.contentions = []
24 self.nextPtr = 0
25 self.data = []
26 self.
27

28 def addContention(self, ptr):
29 self.contentions.append(data)
30

31 def readValue(self, ptr):
32 return self.data[ptr]
33

34 def writeValue(self, data):
35 self.data.append(data)
36 self.nextPtr += 1
37 return self.nextPtr - 1
38

39 class ReadNode(Node):
40

41 def __init__(self, memory):
42 super(Node, self).__init__()
43 self.memory = memory
44 self.ready = True
45 self.ptr = None
46 self.queue = None
47 self.nextOutput = None
48

49 def enqueue(ptr, ready, port):
50 if self.ready:
51 self.queue = ptr
52 else:
53 self.memory.addContention(ptr)
54 self.ready = False
55

56 def processData(self):
57 self.nextOutput =

self.memory.readValue(self.ptr)↪→

58 self.ready = True
59

60 def update_output(self):
61 self.output = self.nextOutput
62

63 def isReady(self):
64 return self.ready
65

66 def get_output(self):
67 return self.output
68

69 nodes = []
70

71 def setup_layout():
72

73

74 def main():
75 setup_layout()
76 while simulation_has_not_quiesced():
77 run_simulation()
78 print_contentions()

10.4 Python MapReturn Example
1 DELAY = 2
2

3 class Node():
4 def __init__(self):
5 self.ready = False
6 self.stop = False
7

8 def isReady(self):
9 return self.ready

10

11 def stop(self):
12 return self.stop
13

14 def hasQuiesced(self):
15 return True
16

17 class Stack():
18 C0 = 0
19 C1 = 1
20

21 def __init__(self, type,):
22

23

24 class Memory():
25 def __init__(self, type, delay=2):
26 self.type = type
27 self.busy = False
28 self.delay = delay
29

30 self.pipeline = {}
31 self.pipelineSize = delay
32

33 self.memory = []
34 self.ptr = 0
35

36 def read(self, ptr):
37 if ptr in self.pipeline:
38

39

40

41 def write(self, data):
42 self.memory.append(data)
43 self.ptr += 1
44 return self.ptr
45

46 def clock(self):
47 for ptr, remaining in

self.pipeline.copy().items():↪→

48

49

50

51 #Initialize Nodes
52

53 stackMemory = Memory("StackMemory", Stack)
54 listMemory = Memory("ListMemory", List)
55

56 g = In("g", g)
57 lp = In("lp", ListPointer)
58

59 #Map Nodes
60 C0 = Produce("C0", Stack.C0)
61 stackWrite1 = Write("stackWrite1", stackMemory)
62 stackWrite2 = Write("stackWrite2", stackMemory)
63 spMerge = Merge("spMerge")
64

65 demuxConsNil = Demux("demuxConsNil")
66 C1 = Produce("C1", Stack.C1)
67

68 gFork = Fork("gFork", 2)
69 gMerge = Merge("gMerge")
70

71 demuxConsNilG("demuxConsNilG")
72

73 nil = Produce("Nil", List.Nil)
74 listWrite1 = Write("listWrite1", listMemory)
75

76 lpMerge = Merge("lpMerge")
77 listRead = Read("listRead", listMemory)
78 nilConsChoice = Choice("nilConsChoice", List)
79 choiceFork = Fork("choiceFork", 2)
80

81 #Cont nodes
82 lpMerge2 = Merge("lpMerge2")
83 spMerge2 = Merge("spMerge2")
84

85 stackRead = Read("stackRead", stackMemory)
86 C0C1Choice = Choice("C0C1Choice", Stack)
87

88 f = Func("f", fdef)
89 C1C0Demux = Demux("C1C0Demux")
90 listCons = Cons("listCons", List.C1)
91 listWrite2 = Write("listWrite2", listMemory)
92

93 #Out nodes
94 result = Out("result")
95

96 #Link Nodes
97 graph = Graph()
98 graph.clink(g, gFork)
99 graph.clink(gFork, [C0, gMerge])

100 graph.clink(lp, lpMerge)
101 graph.clink()
102

103 g.setOutputs([C0, gMerge])
104 lp.setOutputs([lpMerge])
105

106 C0.setInputs([g])
107 C0.setOutputs([stackWrite1])
108

109 stackWrite1.setInputs([C0])
110

111

112

113

114 #Initialize Graph
115 #Set initial values on the transitions
116 #Retrieve all outputs and pass until quiescense

is reached↪→

117 #Where would buffering go?
118 #What would a valid pipeline look like?

10.5 Python Logic Node Definitions
1 """
2

3 A basic digital logic simulator.
4

5 The circuits passed to the simulator may use 4
primitives: and,↪→

6 or, not, and flipFlop.
7

8 This program is an exercise to help me figure
out how to simulate↪→

9 our dataflow graphs.
10

11 """
12

13 #---
14 #-- Shallow embedding used by the simulator

15 #---
16 #-- | Given an initial state and a stream of

inputs, delay the stream↪→

17 #-- by a cycle.
18 def flipFlop(init, inputs):
19 return inputs.insert(0, init)
20

21 # def traffic(reset):
22 # red = flipFlop(True, [Or(x,y) for x,y in

zip(reset, yellow)])↪→

23 # notreset = map(lambda x:not x, reset)
24 # yellow = flipFlop(False, [And(x,y) for x,y

in zip(notreset, green)])↪→

25 # green = flipFlop(False, [And(x,y) for x,y
in zip(red, notreset)])↪→

26 # return zip(red, yellow, green)
27

28 #--
29 #-- Deep embedding for input network
30 #--
31

32 #-- Each node type specifies the source of its
input. FlipFlop↪→

33 #-- also has a boolean indicating its initial
output. We include a Var↪→

34 #-- constructor so we can name the sources of the
network.↪→

35

36 class Packet():
37 def __init__(self, ready=False, data=None):
38 self.ready = ready
39 self.data = data
40

41 def getData(self):
42 return self.data
43

44 def isReady(self):
45 return self.ready
46

47 class Node():
48 def __init__(self):
49 pass
50

51 def execute(self):
52 return None
53

54 class And(Node):
55 def __init__(self, input1, input2, graph):
56 super(And, self).__init__()
57 self.input1 = input1
58 self.input2 = input2
59 self.graph = graph
60

61 def execute(self):
62 input1 =

self.graph.getOutputFor(self.input1)↪→

63 input2 =
self.graph.getOutputFor(self.input2)↪→

64 return input1 and input2
65

66 class Or(Node):
67 def __init__(self, input1, input2, graph):
68 super(Or, self).__init__()
69 self.input1 = input1
70 self.input2 = input2
71 self.graph = graph
72

73 def execute(self):
74 input1 =

self.graph.getOutputFor(self.input1)↪→

75 input2 =
self.graph.getOutputFor(self.input2)↪→

76 return input1 or input2

77

78 class Not(Node):
79 def __init__(self, input1, graph):
80 super(Not, self).__init__()
81 self.input1 = input1
82 self.graph = graph
83

84 def execute(self):
85 output =

self.graph.getOutputFor(self.input1)↪→

86 return not output
87

88 # class FlipFlop(Node):
89 # def __init__(self, input1, graph):
90 # super(FlipFlop, self).__init__()
91 # self.input1 = input1
92 # self.previousOutput = False
93 # self.graph = graph
94 #
95 # def execute(self):
96 # output =

self.graph.getOutputFor(self.input1)↪→

97 # o
98

99 class Var(Node):
100 def __init__(self, name, initialValue,

graph):↪→

101 super(Var, self).__init__()
102 self.name = name
103 self.initialValue = initialValue
104 self.graph = graph
105

106 def setInput(self, initialValue):
107 self.initialValue = initialValue
108

109 def execute(self):
110 return self.initialValue
111

112 def getName(self):
113 return self.name
114

115 class Graph():
116 def __init__(self):
117 self.nodes = {}
118 self.inputs = {}
119 self.outputs = {}
120

121 def addNode(self, index, node,
initialOutput=False):↪→

122 self.nodes[index] = node
123 self.outputs[index] = initialOutput
124

125 def getOutputsFor(self, index):
126 return self.outputs[index]
127

128 def executeAll(self):
129 for index, node in self.nodes.items():
130 self.outputs[index] = node.execute()
131

132 def addInput(self, index, node):
133 if not isinstance(node, Var):
134 raise "Ya done fucked up"
135 self.nodes[index] = node
136 self.inputs[node.getName()] = node
137

138 def setInputValue(self, name, value):
139 self.inputs[name].setInput(value)
140

141

142 def initHalfAdder():
143

144 halfAdder = Graph()
145

146 A = Var("A", True, halfAdder)
147 B = Var("B", True, halfAdder)
148

149 halfAdder.addNode(1, Or(2, 3, halfAdder))
150 halfAdder.addNode(2, And(4, 5, halfAdder))
151 halfAdder.addNode(3, And(6, 7, halfAdder))
152 halfAdder.addNode(4, A)
153 halfAdder.addNode(5, Not(7, halfAdder))
154 halfAdder.addNode(6, Not(4, halfAdder))
155 halfAdder.addNode(7, B)
156

157 return halfAdder
158

159 #Given a set of input values and a netlist,
simulate a cycle of the netlist's↪→

160 #operation on those inputs.
161

162 def simulate(values, graph):
163 for name, val in values:
164 graph.setInputValue(name, val)
165

166 graph.executeAll()
167

168

169

170 #
171 #
172 #
173 # initValues =
174 # simulate :: [(String,Bool)] -> Graph ->

[(Int,Node)]↪→

175 # simulate values (Graph end nodes) = startGraph
176 # where
177 # initValues = catMaybes £ setInputs values
178 # startGraph = filter (\x -> fst x `notElem`

map fst initValues) nodes↪→

179 # --outputs = walkGraph initValue startGraph
180 # --Replace each Var node with it's initial

boolean value↪→

181 # setInputs [] = []
182 # setInputs ((name,val):rest) = let node =

find ((==) (Var name) . snd) nodes↪→

183 # in fmap
(\(num,_) -> (num,val)) node : setInputs rest↪→

10.6 Python MapReturnLib
1 # LANGUAGE DeriveDataTypeable
2 import NodeLib
3 import Memory
4

5 #INS/OUTS
6 caseList_names = ["_c1","_c0"]
7 caseList_Ins = [[1,2]]
8

9 #Cons has an AND-firing rule on its inputs
10 cons_Ins = [[1, 2]]
11

12 #caseList doesn't have any output sets with
AND-firing rules↪→

13 caseList_Outs = []
14

15 caseCont_names = ["_x","_sp","_c0c1"]
16 #Set of outputs, keyed by index, with an

AND-firing rule↪→

17 caseCont_Outs = [[1,2,3]]
18

19 #What the original data types were
20 # data Cont = C2 | C1 Int (Pointer Cont) deriving

(Show,Eq,Typeable)↪→

21 # data List = Empty | Cons Int (Pointer List)
deriving (Show,Eq,Typeable)↪→

22

23 #Define Cont type

24 class Cont():
25 C1, C2 = 0, 1
26

27 def __init__(self, type, data=None):
28 self.type = type
29 self.data = data
30

31 def getType(self):
32 return self.type
33

34 def getData(self):
35 return self.data
36

37 class Pointer():
38 def __init__(self, pntr):
39 self.pntr = pntr
40

41 def getPntr(self):
42 return self.pntr
43

44 ##################
45 # NODE FUNCTIONS #
46 ##################
47

48 def diffMaybes(a, b):
49 return (a is None and b is not None) or (a is

not None and b is None)↪→

50

51 #Construct a continuation
52 # buildCont val k = C1 val (Pointer k)
53 def buildCont(val, k):
54 return Cont(Cont.C1, (val, k))
55

56 # cons :: Maybe Int -> Maybe (Pointer List) ->
Bool -> (Maybe List,Bool,Bool)↪→

57 # cons value pntr stop = (dOut,stop1,stop2)
58 # where
59 # dOut = pure Cons <*> value <*> pntr
60 # stop1 = stop || isNothing pntr
61 # stop2 = stop || isNothing value
62 def cons(value, pntr, stop):
63 dOut = pure(Cons(value, pntr))
64 stop1 = stop or pntr is None
65 stop2 = stop or value is None
66 return dOut, stop1, stop2
67

68

69 ###What was get input
70 # -- | Construct input for the mapReturn function
71 # getInput size = Pointer £ foldr buildCont C2

[size,(size-1)..1]↪→

72 # def getInput(size):
73 # return Pointer(reduce(buildCont,))
74 # All this effectively does is initialize memory
75 def initializeMapReturnMemory(memory, size):
76 pntr = memory.addItems(range(size, 1))
77 return pntr
78

79 # caseList :: Maybe (Pointer List) -> Maybe Cont
-> Bool -> Bool ->↪→

80 # (Maybe (Pointer List),Maybe
(Pointer List), Bool,Bool)↪→

81 # caseList ptr select stopIn1 stopIn2 =
(c1,c2,ptrStop,selectStop)↪→

82 # where
83 # (c1,c2) = caseListData ptr select
84 # ptrStop = genPtrStop select stopIn1 stopIn2
85 # selectStop = genSelectStop ptr select

stopIn1 stopIn2↪→

86 #
87 # genPtrStop Nothing _ _ =

True↪→

88 # genPtrStop (Just (C2)) _ True =
True↪→

89 # genPtrStop (Just (C1 _ _)) True _ =
True↪→

90 # genPtrStop _ _ _ =
False↪→

91 #
92 # genSelectStop Nothing _ _

_ = True↪→

93 # genSelectStop _ (Just (C2)) _
True = True↪→

94 # genSelectStop _ (Just (C1 _ _)) True
_ = True↪→

95 # genSelectStop _ _ _
_ = False↪→

96 #
97 #
98 # caseListData (Just _) (Just (C1 _ _)) =

(ptr,Nothing)↪→

99 # caseListData (Just _) (Just (C2)) =
(Nothing,ptr)↪→

100 # caseListData _ _ =
(Nothing,Nothing)↪→

101 def caseList(ptr, select, stopIn1, stopIn2):
102 def genPtrStop(select, stopIn1, stopIn2):
103 return (select is None) or \
104 (isinstance(select, Cont) and

select.getType() == Cont.C2
and stopIn2) or \

↪→

↪→

105 (isinstance(select, Cont) and
select.getType() == Cont.C1
and stopIn1)

↪→

↪→

106

107 def genSelectStop(ptr, select, stopIn1,
stopIn2):↪→

108 return (ptr is None) or \
109 (isinstance(select, Cont) and

select.getType() == Cont.C2
and stopIn2) or \

↪→

↪→

110 (isinstance(select, Cont) and
select.getType() == Cont.C1
and stopIn1)

↪→

↪→

111

112 def caseListData(ptr, select):
113 if ptr is not None and isinstance(select,

Cont) and select.getType() ==
Cont.C2:

↪→

↪→

114 return (ptr, None)
115 elif ptr is not None and

isinstance(select, Cont) and
select.getType() == Cont.C1:

↪→

↪→

116 return (None, ptr)
117 else:
118 return (None, None)
119

120 c1, c2 = caseListData(ptr, select)
121 ptrStop = genPtrStop(select, stopIn1,

stopIn2)↪→

122 selectStop = genSelectStop(ptr, select,
stopIn1, stopIn2)↪→

123 return c1, c2, ptrStop, selectStop
124

125

126

127 # fNode :: Maybe Int -> Bool -> (Maybe Int,Bool)
128 # fNode input stop = (fmap (*2) input, stop)
129 def fNode(input, stop):
130 return map(lambda x: x * 2, input), stop
131

132 # caseCont :: Maybe Cont -> Bool -> Bool -> Bool
-> Maybe [Bool]↪→

133 # -> (Maybe Int, Maybe (Pointer Cont),
Maybe Cont,Bool,Maybe [Bool])↪→

134 # caseCont val dataStop ptrStop choiceStop st =
(dOut,spOut,choice,stopOut,nextState)↪→

135 # where
136 # dOut = makeOut 0 £ caseData val
137 # spOut = makeOut 1 £ casePtr val
138 # choice = makeOut 2 val
139 #
140 # makeOut index v = if not (bits !! index)
141 # then v else Nothing
142 #
143 # --previous state bits
144 # bits@[b1,b2,b3] = if isNothing st
145 # then replicate 3 False
146 # else fromJust st
147 #
148 # stopOut = if isNothing st
149 # then dataStop || ptrStop ||

choiceStop↪→

150 # else dataStop && not b1 ||
151 # ptrStop && not b2 ||
152 # choiceStop && not b3
153 #
154 # caseData val@(Just (C1 x _)) = Just x
155 # caseData _ = Nothing
156 #
157 # casePtr val@(Just (C1 _ k)) = Just k
158 # casePtr _ = Nothing
159 #
160 # nextState = let bits = [isJust dOut &&

not dataStop || b1↪→

161 # ,isJust spOut &&
not ptrStop || b2↪→

162 # ,isJust choice &&
not choiceStop || b3]↪→

163 # in if isNothing st || and bits
164 # then Just £ replicate 3

False↪→

165 # else Just bits
166

167 def caseCont(val, dataStop, ptrStop, choiceStop,
st):↪→

168 def makeOut(index, v):
169 return v if not (bits[index]) else None
170

171 dOut = makeOut(0, caseData(val))
172 spOut = makeOut(1, casePtr(val))
173 choice = makeOut(2, val)

	Motivation
	Logistics
	Methods
	Background
	Defining Nodes
	merge

	mergeChoice
	source
	sink
	fork
	mux
	demux
	choice
	func
	iconst
	dconst
	dcons
	read
	write
	add/sub/mul/div/gt/gte/lt/lte/eq/not/and/or

	Graph Visualization
	Graph Coloring
	Overview
	Graph Coloring
	Graph Coloring of a flo Dataflow Graph
	Graph Coloring Example

	Simulation
	Nodes
	Packet
	Channel
	Buffer
	Node

	Memory Operations
	Management Framework
	Compiling from AST to Simulator

	Results and Analysis
	Experiments
	Next Steps

	Conclusion
	References
	Code Listing
	Graph Visualization Translation Code
	Simulator Defined Code
	Python Simulator Attempt Main
	Python MapReturn Example
	Python Logic Node Definitions
	Python MapReturnLib

